Detonation and Transition to Detonation in Partially Water-Filled Pipes
نویسندگان
چکیده
Detonations and deflagration-to-detonation transition (DDT) are experimentally studied in horizontal pipes which are partially filled with water. The gas layer above the water is stoichiometric hydrogen–oxygen at 1 bar. The detonation wave produces oblique shock waves in the water, which focus at the bottom of the pipe due to the curvature of the walls. This results in peak pressures at the bottom of the pipe that are 4–6 times greater than the peak detonation pressure. Such pressure amplification is measured for water depths of 0.25, 0.5, 0.75, 0.87, and 0.92 pipe diameters. Focusing of the oblique shock waves is studied further by measuring the circumferential variation of pressure when the water depth is 0.5 pipe diameters, and reasonable agreement with theoretical modeling is found. Despite the local pressure amplification due to shock focusing, peak hoop strains decreased with increasing water depth. Failure of the detonation wave was not observed, even for water depths as high as 0.92 pipe diameters. Likewise, transition to detonation occurred for every water height. [DOI: 10.1115/1.4023429]
منابع مشابه
Structural Response of Piping to Internal Gas Detonation
Detonation waves in gas-filled piping or tubing pose special challenges in analysis and prediction of structural response. The challenges arise due the nature of the detonation process and the role of fluid-structure interaction in determining the propagation and arrest of fractures. Over the past ten years, our laboratory has been engaged in studying this problem and developing methodologies f...
متن کاملFlame Acceleration and Transition from Deflagration to Detonation in Hydrogen Explosions
Computational fluid dynamics based solvers have been developed for explosion modeling in hazards analysis. These include a numerical approach to simulate flame acceleration and deflagration to detonation transition in hydrogen-air mixture and two detonation solvers. The former solves fully compressible, multidimensional, transient, reactive Navier–Stokes equations with a chemical reaction mecha...
متن کاملDetermination of the Parameters in HOM and BKW Equations of State for Detonation Products
One of the basic equations to analyze the detonation of high explosives is the equation of state of the detonation products. Due to the very high pressure of the product, the direct measurement of the thermodynamic variables such as pressure or temperature is not possible. In this research, the parameters of BKW and HOM equations of state of detonation products are determined via experimental m...
متن کاملPhysical Mechanisms of DDT in an Array of PBX 9501 Cylinders Initiation Mechanisms of DDT
The Deflagration to Detonation Transition (DDT) in large arrays (100s) of explosive devices is investigated using large-scale computer simulations running the Uintah Computational Framework. Our particular interest is understanding the fundamental physical mechanisms by which convective deflagration of cylindrical PBX 9501 devices can transition to a fully-developed detonation in transportation...
متن کامل